@conference {154, title = {Automated development of web-based modeling services for MSaaS platforms}, booktitle = {Proceedings of the Symposium on Model-driven Approaches for Simulation Engineering (Mod4Sim 2017) {\textendash} part of SpringSim 2017}, year = {2017}, publisher = {The Society for Modeling and Simulation International}, organization = {The Society for Modeling and Simulation International}, abstract = {

MSaaS (M\&S as a Service) is gaining momentum as an effective approach to bring the benefits of service-oriented architectures and cloud computing into the M\&S field, so as to enhance interoperability, composability, reusability and reduce the cost of M\&S efforts. Such significant advantages can be further enhanced by introducing automated model transformations that support the various phases of a M\&S effort, from simulation model building down to model implementation, deployment and execution. In previous contributions we have already addressed the use of automated model transformations that can be effectively adopted to provide simulation services for MSaaS platforms. This paper instead focuses on the automated development of modeling services for MSaaS, i.e., those services that allow platform users to easily build models in their own modeling language by use of a web-based user interface. Specifically, this work proposes an approach to automatically generate web-based visual editors from a metamodel that defines a given modeling language. Once generated, such editors can be made available on demand through a complete MSaaS platform, which also includes simulation services. The paper first describes the architecture of a MSaaS platform that includes modeling services, then illustrates the method for the automated development of web-based modeling services and, finally, gives a complete example application of the proposed method. {\textcopyright}2017 Society for Modeling \& Simulation International (SCS).

}, keywords = {Automation, Information services, Interoperability, Model driven development, Model transformation, Modeling languages, MSaaS, Reusability, Service oriented architecture (SOA), User interfaces, Visual editors, Visual languages, Web services, Web-based modeling, Websites}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020620129\&partnerID=40\&md5=d5baa89a6c01329dba3a44c6afbf1e92}, author = {Bocciarelli, P. and D{\textquoteright}Ambrogio, A. and Mastromattei, A. and Giglio, A.}, editor = {Durak U. and Cetinkaya D. and D{\textquoteright}Ambrogio A.} } @article {Bocciarelli2014573, title = {A model-driven method for enacting the design-time QoS analysis of business processes}, journal = {Software and Systems Modeling}, volume = {13}, number = {2}, year = {2014}, note = {cited By 6}, pages = {573-598}, publisher = {Springer Verlag}, abstract = {

Business Process Management (BPM) is a holistic approach for describing, analyzing, executing, managing, and improving large enterprise business processes. A business process can be seen as a flow of tasks that are orchestrated to accomplish well-defined goals such as goods production or services delivery. From an IT perspective, BPM is closely related to a business process automation approach carried out by use of IT standards and technologies, such as service-oriented architectures (SOAs) and Web Services. This paper specifically focuses on fully automated business processes that are defined and executed as orchestrations of software services. In a BPM context, the ability to predict at design time the business process behavior assumes a strategic relevance, both to early assess whether or not the business goals are achieved and to gain a competitive advantage. A business process is typically specified by use of Business Process Modeling Notation (BPMN), the standard language for the high-level description of business processes. Unfortunately, BPMN does not support the characterization of the business process in terms of nonfunctional or QoS properties, such as performance and reliability. To overcome such a limitation, this paper introduces Performability-enabled BPMN (PyBPMN), a lightweight BPMN extension for the specification of performance and reliability properties. PyBPMN enables the design time prediction of the business processes behavior, in terms of performance and reliability properties. Such prediction activity requires the use of models that are to be first built and then evaluated. In this respect, this work introduces a model-driven method that exploits PyBPMN to predict, at design time, the performance and the reliability of a business process, either to select the process configuration that provides the best behavior or to check if a given configuration satisfies the overall requirements. The proposed model-driven method that enacts the automated analysis of a business process behavior embraces the complete business process development cycle, from the specification phase down to the implementation phase. The paper also describes how the proposed model-driven method is implemented. The several model transformations at the core of the method have been implemented by use of QVT, and the standard language for specifying model transformations provided by OMG{\textquoteright}s MDA. The availability of such automated model transformations allows business analysts to predict the process behavior with no extra effort and without being required to own specific skills of performance or reliability theory, as shown by use of an example application. {\textcopyright} 2013 Springer-Verlag Berlin Heidelberg.

}, keywords = {Administrative data processing, Automation, Availability, BPMN, Business Process, Competition, Design, Enterprise resource management, Forecasting, High level languages, Information services, LQN, Mathematical models, MDA, Performance, Quality of service, Reliability, Service oriented architecture (SOA), Software architecture, Specifications, Web services}, issn = {16191366}, doi = {10.1007/s10270-013-0345-5}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899754418\&partnerID=40\&md5=ac7ae348f9d39ccb87a9aedb7d7524bd}, author = {Bocciarelli, P. and Andrea D{\textquoteright}Ambrogio} } @article {Bocciarelli2011265, title = {A model-driven method for describing and predicting the reliability of composite services}, journal = {Software and Systems Modeling}, volume = {10}, number = {2}, year = {2011}, note = {cited By 11}, pages = {265-280}, abstract = {Service-oriented computing is the prominent paradigm for viewing business processes as composed of functions provided by modular and standardized services. Web services are the building blocks for the application of service-oriented computing on the Web and provide the necessary support for the consolidation of multiple services into a single composite service corresponding to the overall process. In such a context, service providers are strategically interested in both describing the quality of service (QoS) characteristics of offered services, to better qualify their offer and gain a significant advantage in the global marketplace, and predicting the level of QoS that can be offered to service consumers when building composite web services that make use of services managed by various service providers. This paper illustrates a model-driven method to automatically describe and predict the QoS of composite web services specified by use of business process execution language (BPEL). The paper specifically addresses the reliability characteristic of the QoS. The proposed method is founded on Q-WSDL, a lightweight WSDL extension for the description of the QoS characteristics of a web service, and exploits Q-WSDL to annotate reliability data onto a BPEL-based UML model of the composite service. The UML model is then used to predict and describe the reliability of the composite web service. The proposed method is illustrated by use of an example application that deals with a composite web service for the migration of PSTN telephone numbers. {\textcopyright} 2010 Springer-Verlag.}, keywords = {BPEL, Forecasting, Information services, Model-driven prediction, QoS, Quality of service, Reliability, Service oriented architecture (SOA), Telephone systems, UML, Unified Modeling Language, Web services, WSDL}, issn = {16191366}, doi = {10.1007/s10270-010-0150-3}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955480530\&partnerID=40\&md5=1e9d768badb65996f4a07183d92b15d5}, author = {Bocciarelli, P. and Andrea D{\textquoteright}Ambrogio} } @article {D{\textquoteright}Ambrogio201081, title = {Model-driven quality engineering of service-based systems}, journal = {Smart Innovation, Systems and Technologies}, volume = {2}, year = {2010}, note = {cited By 0}, pages = {81-103}, abstract = {Web services are the building blocks of systems based on service-oriented architectures. A web service is a self-describing, open component that supports rapid composition of distributed applications. Web service definitions are used to describe the service capabilities in terms of the operations of the service and the input and output messages for each operation. Such definitions are expressed in XML by use of the Web Service Definition Language (WSDL). Unfortunately, a WSDL description only addresses the functional aspects of a web service without containing any useful description of non functional or quality of service (QoS) characteristics. This paper introduces a lightweight WSDL extension for the description of QoS characteristics of a web service. The extension is carried out as a metamodel transformation, according to principles and standards recommended by the Model Driven Architecture (MDA). The WSDL metamodel is introduced and then transformed into the Q-WSDL (QoS-enabled WSDL) metamodel. As an example application of Q-WSDL, the paper illustrates a model-driven method that exploits Q-WSDL in order to automatically predict and describe the QoS of systems based on composite web services specified by use of the Business Process Execution Language for Web Services (BPEL). The paper specifically addresses the prediction of the reliability attribute of QoS and is illustrated by use of an example application to a composite web service for travel planning. {\textcopyright} Springer-Verlag Berlin Heidelberg 2010.}, keywords = {BPEL, Business process execution language for web services, Distributed applications, Forecasting, Information services, Meta-model transformations, Model driven architectures, Model-driven, Multimedia services, Quality of service, Service oriented architecture (SOA), Software architecture, Software design, UML, Web service definition languages, Web services, Websites, WSDL}, isbn = {9783642133541}, issn = {21903018}, doi = {10.1007/978-3-642-13355-8_6}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879295871\&partnerID=40\&md5=6aebac9835244b3b880b8819ea5e68f2}, author = {Andrea D{\textquoteright}Ambrogio}, editor = {George, Maria} } @conference {Bocciarelli20081, title = {A measurement framework for the parameterization of performance models of soa-based systems}, booktitle = {Proceedings of the IASTED International Conference on Software Engineering, SE 2008}, year = {2008}, note = {cited By 1}, pages = {1-6}, abstract = {Distributed applications are rapidly converging towards the adoption of a computing paradigm based on service-oriented architectures, according to which an application can be seen as a composite web service that is built by assembling a set of existing services, executed on internetworked server hosts. In such a context, service providers are strategically interested both to describe the performance characteristics of offered services, to better qualify their offer and gain a significant advantage in the global marketplace; and to predict the level of performance that can be offered to service consumers. To this purpose, the paper introduces a framework for the management of performance parameters, defining the architecture that enables service providers to measure and make available performance information about the offered services. On the other hand the proposed approach allows the service consumers to automatically retrieve the performance data and then use such data to apply model-driven approaches for the performance analysis of composite web services.}, keywords = {Composite web services, Computing paradigms, Distributed applications, Global marketplaces, Information services, Internetworked, LQN, Model-driven approaches, Parameters, Performance, Performance analysis, Performance characteristics, Performance datum, Performance models, Performance parameters, Service oriented architecture (SOA), Service providers, Service-oriented architectures, SOA, Soa-based systems, Software engineering, Spontaneous emission, Web services}, isbn = {9780889867154}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-62849121929\&partnerID=40\&md5=86f31e7a2aba49f609769114bee66712}, author = {Bocciarelli, P. and Andrea D{\textquoteright}Ambrogio} } @article {Bocciarelli2008228, title = {Model-driven performability analysis of composite web services}, journal = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)}, volume = {5119 LNCS}, year = {2008}, note = {cited By 14}, pages = {228-246}, abstract = {Web services are the building blocks of the emerging computing paradigm based on service-oriented architectures (SOAs). A web service is a self-describing, open component that supports rapid composition of distributed applications. In a SOA context, service providers are strategically interested both to predict and describe the QoS of the offered services. This paper introduces a model-driven approach to automatically predict and describe the QoS of composite web services specified by use of the Business Process Execution Language for Web Services. The paper is founded on a lightweight QoS-oriented extension of the WSDL and specifically addresses the QoS in terms of the performability attribute, which defines a combined measure of performance and reliability. The proposed approach is illustrated by use of an example application that shows how the performability analysis may lead to predictions that do not correspond to those obtained by approaches that only consider the performance attribute. {\textcopyright} 2008 Springer-Verlag Berlin Heidelberg.}, keywords = {Building blockes, Business process execution language for web services, Combined measure, Composite web services, Distributed applications, Emerging computing paradigm, Information services, Model driven approach, Model-driven, Model-driven development, Perform-ability, Performance, Performance attributes, Quality of service, Reliability, Service oriented architecture (SOA), Service provider, Systems analysis, Web services}, isbn = {3540698132; 9783540698135}, issn = {03029743}, doi = {10.1007/978-3-540-69814-2-15}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-70349880842\&partnerID=40\&md5=2b62ddfcd5d7d53a52f20982c298e063}, author = {Bocciarelli, P. and Andrea D{\textquoteright}Ambrogio} } @conference {D{\textquoteright}Ambrogio200778, title = {A model-driven approach to describe and predict the performance of composite services}, booktitle = {Proceedings of the 6th International Workshop on Software and Performance, WOPS{\textquoteright}07}, year = {2007}, note = {cited By 76}, pages = {78-89}, abstract = {Distributed applications are rapidly converging towards the adoption of a computing paradigm based on service-oriented architectures (SOA), according to which an application results from the composition of a set of services in execution on networked server hosts. In a SOA context, service providers are strategically interested both to describe the performance characteristics of offered services, to better qualify their offer and gain a significant advantage in the global marketplace, and to predict the level of performance that can be offered to service consumers when building composite web services that make use of services managed by various service providers. This paper introduces a model-driven approach for integrating performance prediction into service composition processes carried out by use of BPEL (Business Process Execution Language for Web Services). The proposed approach is founded on P-WSDL (Performance-enabled WSDL), a performance-oriented extension of WSDL, the language for describing the information about service capabilities and invocation mechanisms. P-WSDL is a lightweight WSDL extension for the description of performance characteristics of a web service. The approach is illustrated by use of an example application to a composite web service for travel planning. Copyright 2007 ACM.}, keywords = {Context sensitive grammars, Distributed computer systems, Model checking, Model transformation, Network architecture, Service providers, Service-oriented architectures (SOA), Software performance, User interfaces, Web services}, isbn = {1595932976; 9781595932976}, doi = {10.1145/1216993.1217008}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-34748847460\&partnerID=40\&md5=359f771f293455994ff32902ee2772e6}, author = {Andrea D{\textquoteright}Ambrogio and Bocciarelli, P.} } @conference {D{\textquoteright}Ambrogio2006789, title = {A model-driven WSDL extension for describing the QoS of web services}, booktitle = {Proceedings - ICWS 2006: 2006 IEEE International Conference on Web Services}, year = {2006}, note = {cited By 69}, pages = {789-796}, abstract = {Web services are the building blocks of the emerging computing paradigm based on service-oriented architectures. A web service is a self-describing, open component that supports rapid composition of distributed applications. Web service definitions are used to describe the service capabilities in terms of the operations of the service and the input and output messages for each operation. Such definitions are expressed in XML by use of the Web Service Definition Language (WSDL). Unfortunately, a WSDL description only addresses the functional aspects of a web service without containing any useful description of non-functional or quality of service (QoS) characteristics. This paper introduces a lightweight WSDL extension for the description of QoS characteristics of a web service. The extension is carried out as a metamodel transformation, according to principles and standards recommended by the Model Driven Architecture (MDA). The WSDL metamodel is introduced and then transformed into the Q-WSDL (QoS-enabled WSDL) metamodel. The proposed Q-WSDL extension can effectively be used to specify QoS requirements, to establish service level agreements (SLA), to add QoS-oriented characteristics when querying registries of web services and to support the automated mapping from WSDL documents to Q-WSDL ones and from UML models to Q-WSDL web services. {\textcopyright} 2006 IEEE.}, keywords = {Automated mappings, Computing paradigm, Data structures, Distributed computer systems, Metadata, Quality of service, Service-oriented architectures, Unified Modeling Language, Web Service Definition Language (WSDL), Web services, XML}, isbn = {0769526691; 9780769526690}, doi = {10.1109/ICWS.2006.10}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-38949121932\&partnerID=40\&md5=a1ab2cc907fb8abdedb50d97ab6a9776}, author = {Andrea D{\textquoteright}Ambrogio} } @article {D{\textquoteright}Ambrogio2005371, title = {A WSDL extension for performance-enabled description of web services}, journal = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)}, volume = {3733 LNCS}, year = {2005}, note = {cited By 6}, pages = {371-381}, abstract = {Web services are the building blocks of the emerging computing paradigm based on service-oriented architectures. A web service is a self-describing, open component that supports rapid composition of distributed applications. Web service definitions are used to describe the service capabilities in terms of the operations of the service and the input and output messages for each operation. Such definitions are expressed in XML by use of the Web Service Definition Language (WSDL). Unfortunately, a WSDL description only addresses the functional aspects of a web service without containing any useful description of non-functional or quality of service characteristics. This paper addresses the performance attribute of quality of service and introduces a WSDL extension for the description of performance characteristics of a web service. The extension is carried out as a metamodel transformation, according to principles and standards recommended by the Model Driven Architecture (MDA). The WSDL metamodel is introduced and then transformed into the P-WSDL (Performance-enabled WSDL) metamodel. The proposed P-WSDL extension can effectively be used to specify performance requirements of web services, to describe performance data measured on given web services, to add performance-oriented characteristics when querying registries of web services, to ease the derivation of performance models of web services and to support the automated mapping from WSDL documents to P-WSDL ones and from UML models to P-WSDL web services. {\textcopyright} Springer-Verlag Berlin Heidelberg 2005.}, keywords = {Computer architecture, Distributed computer systems, Mathematical models, Performance-enabled description, Quality of service, Rapid composition, Web Service Definition Language (WSDL), Web services, World Wide Web, XML}, isbn = {3540294147; 9783540294146}, issn = {03029743}, doi = {10.1007/11569596_40}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646536536\&partnerID=40\&md5=e0230caf091fca87279fb7199426e55c}, author = {Andrea D{\textquoteright}Ambrogio} }